ABSTRACT - Metastases to vertebrae often cause bone destruction leading to instability and neural compression. Anterior surgical approaches allow tumor resection and direct neural decompression. For patients with a short life expectancy, vertebral body replacement with methyl-methacrylate polymerized in situ can be used for load sharing in the axial plane. Screws hung from the rod into the corpectomy site are incorporated into the acrylic cement. The technique described in this article allows for immediate spinal stabilization and provides a protective environment for the neural elements. All the patients tolerated the procedure well and were able to ambulation without aids.

KEYWORDS: vertebral body metastasis, methyl-methacrylate implant, pain relief.

Instability of the spine consequent to the invasion of primary tumor is a serious complication in cancer patients. Common primary tumors include lung, breast, prostate and renal cancer. Casadei et al. reported that none of their 25 patients with pathologic fractures at the thoracolumbar spine due to vertebral metastases had stable lesions. In these patients, pain is the most important symptom. Such pain is often relentless. Patients note localized back pain and radicular pain. Pain often announces instability due to bony destruction. Pain may also be related to the expansive nature of the tumor with perioskeletal invasion. These individuals have broken bones and any movement, even breathing, will elicit pain. Although the chances of cure may be elusive in patients with vertebral metastases, surgeons should try to provide them with a better quality of life. After surgical procedures such as anterior vertebral body resection, reconstruction and stabilization of the spine, an improvement of pain and neurological dysfunction is frequently observed. We present a safe, easy and low cost technique that can be used in those patients providing a better quality of life.
Figs 1-3.
Demonstration of the technique using a cadaver specimen. For details, see text.
Ao, Aorta; H.V., Hemiazygos vein; I.V.(A/V), Intercostal vessels (artery/vein); I.V.D., Intervertebral disc; I.V.S., Intervertebral space; VB., Vertebral body; D., Dura; P., Pedicle; R., Rod (TSRH, Daneke, Memphis, TN); S., Screw(s) (TSRH, Daneke, Memphis, TN); M.R., Malleable retractor; F.C., Polymerizing cement (Aneuroplastic™ Codman).
Figs 4-6
Demonstration of the technique using a cadaver specimen. For details, see text.
Ao, Aorta; H.V., Ileum; I.V.(A, V), Intercostal vessel (artery; vein); I.V.D., Intervertebral disc; I.V.S., Intervertebral space; VB., Vertebral body; D, Dura; P, Pedicle; R, Rod (TSRH, Daneke, Memphis, TN); S, Screw(s) (TSRH, Daneke, Memphis, TN); M.R., Malleable retractor; P.C., Polymerizing cement (Antruplaistic™ Codman).
Fig 7. Postoperative X-ray of a patient.

METHOD

Six patients with metastatic lesions in the thoracic spine underwent anterior decompression of the spinal cord and stabilization. The operative technique involved debulking of the tumor and structurally inadequate bone. Neural decompression was confirmed by dural exposure and visualization of the opposite pedicle. Demonstration of the technique is summarized using a cadaver specimen (Figs 1-6).

The intercostal vessels course in the middle of the vertebral bodies. This anatomical relation is important to identify the intervertebral disc spaces and the vertebral body. (Fig 1). The intercostal vessels were removed and the interspaces and the vertebral body were easily identified (Fig 2). Discectomies were performed at one level above and below the lesion. The corpectomy was completed using osteotomies and a surgical drill (Midas Rex™). The dura was exposed. The decompression was not complete until the contralateral pedicle was exposed. The endplates of adjacent vertebrae were removed to promote acrylic fixation (Fig 3 white arrow head). An appropriate rod length was measured and cut. Screw fixation sites were determined; angled 10° anteriorly to avoid neurovascular structures (Fig 3 small white arrow). The acrylic anchoring center screw was shorter than the cranial and the caudal bone fixation screws (Fig 4). The center screw was preloaded onto the rod before securing the rod onto the bone screws. The center screw now hangs into the corpectomy site.

COMMENTS

Although the duration of survival was limited, surgery proved to be beneficial in providing a significant and early improvement in the patients functional status and pain relief, bringing about an improvement in the quality of life. The mortality and functional failure with pain and neurological impairment occurs when there was spreading of the tumor to the peri-vertebral soft tissues and with epiduritis extending beyond the bone lesion. Thus, to be perfectly efficacious, anterior spine surgery for vertebral metastases should be integrated, in the global treatment of the metastatic disease.

Our experience and the results found in the literature suggest that transthoracic corpectomy and spinal stabilization can improve the quality of life considerably in cancer patients with spinal metastases by restoring or preserving ambulation and by controlling intractable spinal pain with acceptable rates of morbidity and mortality. Indeed the quality of life was improved for these surgically treated patients. We recommend surgical decompression and stabilization for selected patients with vertebral metastases.
REFERENCES